A Table-Top Pilot Experiment for Narrow Mass Range Light Cold Dark Matter Particle Searches

2020 
This report presents the detection framework and a proposal for a pilot table-top experiment (supported by simulations and preliminary test results) for adoption into narrow mass range light Cold Dark Matter (CDM) searches, specifically for axions or Axion-Like Particles (ALPs) in a resonant cavity-based scheme. The novelty of this proposal lies in an attempt to concentrate searches corresponding to specific axion masses of interest (coinciding with recent proposals), using multiple cavities in a symmetric scheme, instead of using noisy and complicated tuning mechanisms, and in reduction of associated hardware by employing simpler underlying instrumentation instead of heterodyne mode of detection, by means of a low-noise ac amplification and dc phase-sensitive detection scheme, in order to make a viable and compact table-top experiment possible. These simplifications could possibly be valuable in substantially reducing detection hardware, experiment complexities (and associated noise) and long run-times, while maintaining low noise similar to conventional axion searches. The feasibility of proposed scheme and the experiment design are demonstrated with some calculations, simulations and preliminary tests with artificial axion signals injected into the cavities. The technique and ideas reported here have significant potential to be developed into a small-scale table-top, narrow-range, dark matter axion/ALP spectroscopy experiment, in addition to aiding in the on-going resonant cavity-based and broadband experiments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []