A dynamic basal complex modulates mammalian sperm movement

2021 
Reproductive success depends on efficient sperm movement driven by axonemal dynein-mediated microtubule sliding. Models predict sliding at the base of the tail – the centriole – but such sliding has never been observed. Centrioles are ancient organelles with a conserved architecture; their rigidity is thought to restrict microtubule sliding. Here, we show that, in mammalian sperm, the atypical distal centriole (DC) and its surrounding atypical pericentriolar matrix form a dynamic basal complex (DBC) that facilitates a cascade of internal sliding deformations, coupling tail beating with asymmetric head kinking. During asymmetric tail beating, the DC’s right side and its surroundings slide ~300 nm rostrally relative to the left side. The deformation throughout the DBC is transmitted to the head-tail junction; thus, the head tilts to the left, generating a kinking motion. These findings suggest that the DBC evolved as a dynamic linker coupling sperm head and tail into a single self-coordinated system. Centrioles are ancient organelles with a conserved architecture and their rigidity is thought to restrict microtubule sliding. Here authors show that, in mammalian sperm, the atypical distal centriole and its surrounding atypical pericentriolar matrix form a dynamic basal complex that facilitates a cascade of internal sliding deformations, coupling tail beating with asymmetric head kinking.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    3
    Citations
    NaN
    KQI
    []