Transformation of Spin in Quantum Reference Frames.

2021 
In physical experiments, reference frames are standardly modelled through a specific choice of coordinates used to describe the physical systems, but they themselves are not considered as such. However, any reference frame is a physical system that ultimately behaves according to quantum mechanics. We develop a framework for rotational (i.e. spin) quantum reference frames, with respect to which quantum systems with spin degrees of freedom are described. We give an explicit model for such frames as systems composed of three spin coherent states of angular momentum $j$ and introduce the transformations between them by upgrading the Euler angles occurring in classical $\textrm{SO}(3)$ spin transformations to quantum mechanical operators acting on the states of the reference frames. To ensure that an arbitrary rotation can be applied on the spin we take the limit of infinitely large $j$, in which case the angle operator possesses a continuous spectrum. We prove that rotationally invariant Hamiltonian of the Heisenberg model is invariant under a larger group of quantum reference frame transformations. Finally, the application to physical examples shows that superposition and entanglement of spin states are frame-dependent notions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    2
    Citations
    NaN
    KQI
    []