A microfluidic system for viability determination of microalgae upon disinfectant treatment under continuous flow

2021 
Abstract The extensive use of quaternary ammonium compounds (QACs) has raised concerns regarding their environmental fate and potential risks to the ecosystem. As sensitive pollution indicators, green microalgae could readily monitor the aquatic toxicity of QACs as reflective of the changes in cell viability. Recent microfluidic-based systems have been designed for environmental biomonitoring and ecotoxicity studies while overall information of cell viability cannot be directly visualized under flowing conditions. In the present study, we developed a multifunctional microfluidic platform with the integration of analytical techniques including laser speckle contrast imaging and fluorescence spectroscopy for monitoring algal activity in response to QAC treatment. The biocidal efficiency of a representative QAC benzalkonium bromide (BAB) on a typical aquatic algae Chlorella vulgaris was determined by collecting the bio-speckles and chlorophyll autofluorescence in real-time, where dose-dependent and time-dependent decrease of algal growth was found with the increase of BAB concentration and interaction time. The integrated system was capable of rapid detection of the aquatic toxicity of QACs along with macroscopical visualization of algal activities under flowing conditions in time-course, which could be extended to future implementation for broad ecotoxicity analysis of versatile environmental samples.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []