Graph Variational Autoencoder for Detector Reconstruction and Fast Simulation in High-Energy Physics

2021 
Accurate and fast simulation of particle physics processes is crucial for the high-energy physics community. Simulating particle interactions with the detector is both time consuming and computationally expensive. With its proton-proton collision energy of 13 TeV, the Large Hadron Collider is uniquely positioned to detect and measure the rare phenomena that can shape our knowledge of new interactions. The High-Luminosity Large Hadron Collider (HLLHC) upgrade will put a significant strain on the computing infrastructure and budget due to increased event rate and levels of pile-up. Simulation of highenergy physics collisions needs to be significantly faster without sacrificing the physics accuracy. Machine learning approaches can offer faster solutions, while maintaining a high level of fidelity. We introduce a graph generative model that provides effiective reconstruction of LHC events on the level of calorimeter deposits and tracks, paving the way for full detector level fast simulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    0
    Citations
    NaN
    KQI
    []