Extraction and preconcentration of compounds from the l-tyrosine metabolic pathway prior to their micellar electrokinetic chromatography separation.

2020 
Abstract The prominent biological effects of adrenaline (A), noradrenaline (NA) and dopamine (DA) as well as the clinical importance of their metabolites (such as dihydroxyphenylacetic acid (DOPAC), methoxy-4-hydroxyphenyl glycol (MHPG), dihydroxyphenylglycol (DHPG), metanephrine (M), normetanephrine (NM), vanillylmandelic acid (VMA), homovanillic acid (HVA)) have forced researchers to evaluate new analytical methodologies for their isolation and preconcentration from biological samples. For this reason, the three most popular extraction techniques (dispersive liquid-liquid microextraction (DLLME), solid-phase extraction (SPE), solid-phase microextraction (SPME)) were tested. Micellar electrokinetic chromatography (MEKC) – a mode of capillary electrophoresis – with a diode array detector (DAD) was applied to assess the extraction efficiency. Next, the enrichment factor (EF) of each applied method was calculated in respect to standard mixtures of the analytes at the same concentration levels. The EF results of seven selected metabolites of biogenic amines (BAs) from urine after sample preparation procedures based on twenty-five different protocols (one DLLME, thirteen SPE and eleven SPME) were calculated and compared using hierarchical cluster analysis (HCA). The SPE as well as SPME procedures were proved to be the most effective approaches for the simultaneous extraction of the chosen compounds. Moreover, an ionic liquid (IL) – 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide – added to methanol in SPME additionally could successfully improve the extraction efficiency. It was also confirmed that the HCA approach could be considered a supportive tool in the selection of a suitable sample preparation procedure for that group of endogenous substances.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    2
    Citations
    NaN
    KQI
    []