Using molecular dynamics simulations to identify the key factors responsible for chiral recognition by an amino acid-based molecular micelle

2019 
AbstractMolecular dynamics (MD) simulations were used to investigate the binding of six chiral compounds to the amino acid-based molecular micelle (MM) poly-(sodium undecyl-(L)-leucine-leucine) or poly(SULL). The MM investigated is used as a chiral selector in capillary electrophoresis. The project goal was to characterize the chiral recognition mechanism in these separations and to move toward predictive models to identify the best amino acid-based MM for a given separation. Poly(SULL) was found to contain six binding sites into which chiral compounds could insert. Four sites had similar sizes, shapes, and electrostatic properties. Enantiomers of alprenolol, propranolol, 1,1′-bi-2-naphthyl-2,2′-diyl hydrogen phosphate, 1,1′-bi-2-naphthol, chlorthalidone, or lorazepam were separately docked into each binding pocket and MD simulations with the resulting intermolecular complexes were performed. Solvent-accessible surface area calculations showed the compounds preferentially associated with binding sites whe...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    6
    Citations
    NaN
    KQI
    []