Quantitation with QUEST of brain HRMAS-NMR signals: Application to metabolic disorders in experimental epileptic seizures

2008 
Quantitation of High Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) signals enables establishing reference metabolite profiles of ex vivo tissues. Signals are often contaminated by a background signal originating mainly from macromolecules and lipids and by residual water which hampers proper quantitation. We show that automatic quantitation of HRMAS signals, even in the presence of a background, can be achieved by the semi-parametric algorithm QUEST based on prior knowledge of a metabolite basis-set. The latter was quantum-mechanically simulated with NMR-SCOPE and requires accurate spin parameters. The region of interest of spectra is a small part of the full spectral bandwidth. Reducing the computation time inherent to the large number of data-points is possible by using ER-Filter in a preprocessing step. Through Monte-Carlo studies, we analyze the performances of quantitation without and with ER-Filtering. Applications of QUEST to quantitation of 1H ex vivo HRMAS-NMR data of mouse brains after intoxication with soman, are demonstrated. Metabolic profiles obtained during status epilepticus and later when neuronal lesions are installed, are established. Acetate, Alanine, Choline and γ-amino-butyric acid concentrations increase in the piriform cortex during the initial status epilepticus, when seizures are maximum; Lactate and Glutamine concentrations increase while myo-Inositol and N-acetylaspartate concentrations decrease when neuronal lesions are clearly installed. Magn Reson Med 59:1266–1273, 2008. © 2008 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    35
    Citations
    NaN
    KQI
    []