KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype

2020 
Abstract Cellular senescence restrains the expansion of neoplastic cells through several layers of regulation, including epigenetic decoration of chromatin structure and functional modulation of bioactive components. Here we report that expression of the histone H3-specific demethylase KDM4 is upregulated in human stromal cells upon cellular senescence. In clinical oncology, upregulated KDM4 and diminished H3K9/H3K36 methylation are correlated with adverse survival of cancer patients post-chemotherapy. Global chromatin accessibility mapping via ATAC-seq and expression profiling through RNA-seq reveal extensive reorganization of chromosomes and spatiotemporal reprogramming of the transcriptomic landscape, events responsible for development of the senescence-associated secretory phenotype (SASP). Selectively targeting KDM4 dampens the SASP of senescent stromal cells and enhances the apoptotic index of cancer cells in the treatment-damaged tumor microenvironment (TME), together prolonging overall survival of experimental animals. Our study supports the dynamic change of H3K9/H3K36 methylation marks during cellular senescence, identifies an unusually permissive chromatin state, unmasks KDM4 as a key modulator of the SASP, and presents a novel therapeutic avenue to manipulate cellular senescence and curtail age-related pathologies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    3
    Citations
    NaN
    KQI
    []