PICASSO: Ultra-multiplexed fluorescence imaging of biomolecules through single-round imaging and blind source unmixing

2021 
Ultra-multiplexed fluorescence imaging of biomolecules is essential to studying heterogeneous biological systems. However, this is challenging due to fluorophores' spectral overlap and variation of the emission spectra. Here, we propose a strategy termed PICASSO, which enables more than 15-colour multiplexed imaging of thick tissue slices through a single imaging process and blind unmixing without reference spectra measurement. We show that PICASSO can be used to achieve a high multiplexing capability in diverse applications, such as 3D protein imaging, expansion microscopy, tissue clearing, imaging of clinical specimens, and cyclic immunofluorescence imaging. PICASSO only requires an equal number of images as the number of fluorophores, enabling such a high level of multiplexed imaging even with bandpass filter-based microscopy. As such, PICASSO would be a useful tool for the study of cancer, the immune system, and the brain, as well as for the diagnosis of cancer, as it enables ultra-multiplexed imaging of diverse specimens with minimum instrumental requirements and experimental processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    2
    Citations
    NaN
    KQI
    []