Host-Guest Interaction-Based Dual response core/shell nanoparticles as efficient siRNA carrier for killing breast cancer cells.

2021 
How to overcome multiple obstacles to achieve the efficient and safe delivery of therapeutic genes is still the key to gene therapy. To address this issue, a cationic carrier consisting of polyamide-amine (HPAA-peptide-Fc) modified by an enzyme-responsive polypeptide as the core and hyperbranched polyglycerol derivative (CD-HPG) as the shell was synthesized by self-assembly. The obtained HPAA-peptide-HPG could form the compact nanocomplex with siPlk1, thus confirming the stable load of genes and subsequent targeted gene delivery. And the nanogenes could significantly induce apoptotic effect via the down-expression of Plk1 protein in breast cancer cells. Moreover, compared to polyethylenimine, HPAA-peptide-HPG exhibited superior biocompatibility through hemolysis and cell viability assays because of the shielding function of CD-HPG, thereby being beneficial to increasing the circulation time of the complex when administrated in vivo. Such an efficient and safe gene delivery complex (HPAA-peptide-HPG) presents a good example of rational design of cationic supramolecular vesicles for stimulus-responsive siRNA transport, which should be encouraged in cancer gene therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []