Narrow-line cooling and imaging of Ytterbium atoms in an optical tweezer array

2019 
Engineering controllable, strongly interacting many-body quantum systems is at the frontier of quantum simulation and quantum information processing. Arrays of laser-cooled neutral atoms in optical tweezers have emerged as a promising platform because of their flexibility and the potential for strong interactions via Rydberg states. Existing neutral atom array experiments utilize alkali atoms, but alkaline-earth atoms offer many advantages in terms of coherence and control, and also open the door to new applications in precision measurement and time keeping. In this Letter, we present a technique to trap individual alkaline-earth-like ytterbium (Yb) atoms in optical tweezer arrays. The narrow $^{1}{S}_{0}\text{\ensuremath{-}}^{3}{P}_{1}$ intercombination line is used for both cooling and imaging in a magic-wavelength optical tweezer at 532 nm. The low Doppler temperature allows for imaging near the saturation intensity, resulting in a very high atom detection fidelity. We demonstrate the imaging fidelity concretely by observing rare ($l1$ in $1{0}^{4}$ images) spontaneous quantum jumps into and out of a metastable state. We also demonstrate stochastic loading of atoms into a two-dimensional, 144-site tweezer array. This platform will enable advances in quantum information processing, quantum simulation, and precision measurement. The demonstrated narrow-line Doppler imaging may also be applied in tweezer arrays or quantum gas microscopes using other atoms with similar transitions, such as erbium and dysprosium.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []