Microscopic derivation of the quadrupole collective Hamiltonian for shape coexistence/mixing dynamics

2016 
Assuming that the time-evolution of the self-consistent mean field is determined by five pairs of collective coordinate and collective momentum, we microscopically derive the collective Hamiltonian for low-frequency quadrupole modes of excitation. We show that the five-dimensional collective Schr\"odinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We focus on basic ideas and recent advances of the approaches based on the time-dependent mean-field theory, but relations to other time-independent approaches are also briefly discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    111
    References
    12
    Citations
    NaN
    KQI
    []