Enhancing the CO2 capturing ability in leaf via xenobiotic auxin uptake

2020 
Abstract Plants are masterpieces of evolution that is based on carbon chemistry. In particular, plant leaves are biosynthetic factories able to convert CO2 into carbohydrates and oxygen. It is worth noting that mimicking the efficiency of a natural plant and natural leaf is still a challenge for contemporary chemistry. We can even better realize this when we notice that a plant and an industrial factory are equivalent in meaning. On the other hand, green technologies are under development in a quest for the artificial leaf. If we could modify the synthetic pathways in leaves, we could also design green chemistry schemes in natural leaves to produce useful chemicals or to digest wastes or toxins. Specifically, can we intensify the potential for capturing atmospheric CO2 in leaves? Auxins are plant hormones that control the growth and development of plants. Herein, we determined whether we could efficiently transport xenobiotic auxin into leaves and if so, whether this supply could enhance the metabolism and CO2 capturing ability. By exploring a series of dioxolanes as potential enhancers of auxin transport, we discovered for the first time that a small molecular compound, 2,2-dimethyl-1,3-dioxolane (DMD), enhances the xenobiotic auxin transport to leaves, which boosts the metabolism that is measured by H2O2 production as well as CO2 capturing ability in leaves.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []