Cobalt-Hydrogen Atomic and Ionic Collisional Data

2020 
Rate coefficients for inelastic processes in low-energy Co + H, Co + + H − , Co + + H , and Co 2 + + H − collisions are estimated using the quantum simplified model. Considerations include 44 triplet and 55 quintet molecular states of CoH, as well as 91 molecular states of CoH + . The estimations provide the rate coefficients for the 4862 partial processes (mutual neutralization, ion-pair formation, excitation, and de-excitation) in the neutral CoH system, and for the 8 , 190 partial processes in the ionized CoH + system, 13 , 052 processes in total. At T = 6000 K, the rate coefficients with the largest values around 6 × 10 − 8 cm 3 s − 1 correspond to the mutual neutralization processes into the Co ( e 2 F ) + H and Co + ( g 5 F ) + H final channels in the neutral and ionized systems, respectively. Among the excitation and de-excitation processes in Co + H and in Co + + H collisions, at T = 6000 K, the largest rate coefficients have values around 7 × 10 − 9 cm 3 s − 1 and correspond to the processes Co ( y 2 S ∘ ) + H → Co ( e 2 F ; v 4 D ∘ ) + H and Co + ( h 3 P ) + H → Co + ( g 3 P ; g 5 P ; g 5 F ) + H , respectively. The calculations single out inelastic processes important for non-local thermodynamic equilibrium (NLTE) modelling of Co I and Co II spectra in stellar atmospheres. The test NLTE calculations are carried out, and it is found that the new collision rates have a strong effect on the line formation and NLTE abundance corrections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []