Compensation of Actuator Dynamics Governed by Quasilinear Hyperbolic PDEs

2017 
We present a methodology for stabilization of general nonlinear systems with actuator dynamics governed by general, quasilinear, first-order hyperbolic PDEs. Since for such PDE-ODE cascades the speed of propagation depends on the PDE state itself (which implies that the prediction horizon cannot be a priori known analytically), the key design challenge is the determination of the predictor state. We resolve this challenge and introduce a PDE predictor-feedback control law that compensates the transport actuator dynamics. Due to the potential formation of shock waves in the solutions of quasilinear, first-order hyperbolic PDEs (which is related to the fundamental restriction for systems with time-varying delays that the delay rate is bounded by unity), we limit ourselves to a certain feasibility region around the origin and we show that the PDE predictor-feedback law achieves asymptotic stability of the closed-loop system, providing an estimate of its region of attraction. Our analysis combines Lyapunov-like arguments and ISS estimates. Since it may be intriguing as to what is the exact relation of the cascade to a system with input delay, we highlight the fact that the considered PDE-ODE cascade gives rise to a system with input delay, with a delay that depends on past input values (defined implicitly via a nonlinear equation).
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []