Compositional balance should be considered in the mapping of soil particle-size fractions using hybrid interpolators

2021 
Abstract. Digital soil mapping of soil particle-size fractions (PSFs) using log-ratio methods is a widely used technique. As a hybrid interpolator, regression kriging (RK) provides a way to improve prediction accuracy. However, there have been few comparisons with other techniques when RK is applied for compositional data, and it is not known if its performance based on different balances of isometric log-ratio (ILR) transformation is robust. Here, we compared the generalized linear model (GLM), random forest (RF), and their hybrid patterns (RK) using different transformed data based on three ILR balances, with 29 environmental covariables (ECs) for the prediction of soil PSFs in the upper reaches of the Heihe River Basin (HRB), China. The results showed that the RF performed best, with more accurate predictions, but the GLM produced a more unbiased prediction. As a hybrid interpolator, RK was recommended because it widened the data ranges of the prediction values, and modified the bias and accuracy of most models, especially the RF. The prediction maps generated from RK revealed more details of the soil sampling points than the other models. Different data distributions were produced for the three ILR balances. Using the most abundant component of the compositional data as the first component of the permutations was not considered to be the right choice because it produced the worst performance. Based on the relative abundance of the components, we recommend that the focus should be on data distribution. This study provides a reference for the mapping of soil PSFs combined with transformed data at the regional scale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []