Cryogenic beam-combiner for very low background 2- to 20-μm interferometry on the 22.8-m Large Binocular Telescope

2000 
The 22.8 m Large Binocular Telescope Interferometer will be a uniquely powerful tool for imaging and nulling interferometry at thermal infrared wavelengths (2 - 20 micrometers ) because of the LBT's unusual combination of low emissivity, high spatial resolution, broad (u,v)-plane coverage, and high photometric sensitivity. The gregorian adaptive secondary mirrors permit beam combination after only three warm reflections. They also control the relative pathlength, wavefront tip/tilt, and focus of the two telescope beams, thus greatly simplifying the complexity of the beam-combiner. The resulting four-mirror beam-combiner reimages the original focal plane and also images the telescope pupil onto a cold stop to limit thermal background. At first-light in 2004, an all-reflective, cooled beam-combiner can provide a 2 arcmin diameter field for Fizeau-style imaging as well as the low thermal background and achromaticity required for nulling interferometry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    7
    Citations
    NaN
    KQI
    []