Multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications

2015 
The need for miniaturization without compromising cost and performance continues to motivate research in advanced capacitor devices. In this report, multilayer ceramic capacitors based on relaxor BaTiO3-Bi(Zn1/2Ti1/2)O3 (BT-BZT) were fabricated and characterized. In bulk ceramic embodiments, BT-BZT has been shown to exhibit relative permittivities greater than 1000, high resistivities (ρ > 1 GΩ-cm at 300 °C), and negligible saturation up to fields as high as 150 kV/cm. Multilayer capacitor embodiments were fabricated and found to exhibit similar dielectric and resistivity properties. The energy density for the multilayer ceramics reached values of ∼2.8 J/cm3 at room temperature at an applied electric field of ∼330 kV/cm. This represents a significant improvement compared to commercially available multilayer capacitors. The dielectric properties were also found to be stable over a wide range of temperatures with a temperature coefficient of approximately −2000 ppm/K measured from 50 to 350 °C, an important...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    76
    Citations
    NaN
    KQI
    []