Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene.

2013 
Molecularly imprinted polymers (MIPs) with trinitrophenol (TNP) as a dummy template molecule capped with CdTe quantum dots (QDs) were prepared using 3-aminopropyltriethoxy silane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross linker through a seed-growth method via a sol–gel process (i.e., DMIP@QDs) for the sensing of 2,4,6-trinitrotoluene (TNT) on the basis of electron-transfer-induced fluorescence quenching. With the presence and increase of TNT in sample solutions, a Meisenheimer complex was formed between TNT and the primary amino groups on the surface of the QDs. The energy of the QDs was transferred to the complex, resulting in the quenching of the QDs and thus decreasing the fluorescence intensity, which allowed the TNT to be sensed optically. DMIP@QDs generated a significantly reduced fluorescent intensity within less than 10 min upon binding TNT. The fluorescence-quenching fractions of the sensor presented a satisfactory linearity with TNT concentrations in the range ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    211
    Citations
    NaN
    KQI
    []