Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay.

1983 
The interpretation of quantitative assays for leukocyte chemotactic migration is usually made in terms of measurements such as leading front distance, total migrating cells, and leukotactic index. These quantities allow comparison of cellular migration behavior under specified conditions. They are not useful; however, for comparisons between systems or for correlation with in vivo performance, because they depend upon specific physical aspects of the assay system, such as the geometry, chemoattractant concentration and diffusivity, and observation time. It would be more helpful to measure intrinsic properties of cell movement that could be used for comparison between systems, for correlation with in vivo studies, and to increase our understanding of the cell physiology. In this paper we demonstrate a means of quantitating leukocyte random motility, chemokinesis, and chemotaxis in terms of parameters that do characterize intrinsic cell properties. These parameters are the random motility coefficient and the chemotaxis coefficient, which appear in theoretical models of cell migration. We examine how well such a model describes the leukocyte density profile data observed in a modified under-agarose assay having a linear geometry. Furthermore, we obtain values for the random motility coefficient (and its dependence upon the concentration of the attractant peptide FNLLP) and for the chemotaxis coefficient for leukocytes responding to FNLLP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    60
    Citations
    NaN
    KQI
    []