The influence of crystalline electrical field on magnetic and magnetocaloric properties in Er1-yTbyAl2 compounds

2017 
Abstract We report the anisotropy of magnetic field-induced entropy change in rare earth Er 1 - y Tb y Al 2 compounds (y = 0.00, 0.25, 0.50, 0.75 and 1.00). In the present work, we use a model Hamiltonian that includes the crystalline electrical field anisotropy in both Er and Tb magnetic sublattices, chemical disorder in exchange interactions among Er-Er, Tb-Tb and Er-Tb magnetic ions and the Zeeman effect. We investigated the isothermal magnetic entropy change Δ S T for a magnetic field of 1 T rotating from a hard 〈0 0 1〉 to the easy 〈1 1 1〉 direction. We also performed a systematic analysis of the reorientation temperature as a function of the magnetic field intensity. The anisotropic magnetocaloric effect highlights the applicability of this effect on the rotating magnetic refrigeration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    2
    Citations
    NaN
    KQI
    []