Integration of Fe 3 O 4 nanospheres and micropyramidal textured silicon wafer with improved photoelectrochemical performance

2021 
Silicon (Si)-based composites have attracted extensive attention for photoelectrochemical (PEC) application. Herein, micropyramidal textured Si wafer was constructed by wet chemical etching method. Hydrothermally synthesized Fe3O4 nanospheres were further deposited on the micropyramids by a simple dip-coating approach. The integrated Fe3O4 nanospheres and Si micropyramids (denoted as Fe3O4@SiMPs) revealed 20 times of higher PEC efficiency than planar Si wafer, without obvious photocurrent decay and crystalline structure change during chronoamperometry test. The greatly enhanced PEC performance of Fe3O4@SiMPs is largely attributed to the seamless integration of Si micropyramids and Fe3O4 nanospheres. The micropyramidal textured structure can enhance light absorption by reducing the surface reflectance and enhancing the light trapping effect. The micropyramids and Fe3O4 nanospheres on the surface of planar Si wafer offer more specific surface area for the contact of electrode with electrolyte. The Fe3O4 nanospheres not only protect the micropyramids from corrosion, but also accelerate the PEC kinetics by promoting charge transfer between the electrode and the electrolyte. This study can inspire the optimal design of Si wafer-based nanocomposites as efficient PEC catalysts for overall water splitting.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    0
    Citations
    NaN
    KQI
    []