Microstructure and Mechanical Properties of Platinum Fiber Fabricated by Unidirectional Solidification

2020 
The microstructure and mechanical properties of platinum (Pt) fibers fabricated by unidirectional solidification using the alloy-micro-pulling-down (A-μ-PD) method were investigated using a Universal Testing Machine and Electron Backscattered Diffraction (EBSD). The Pt fiber fabricated at a growth rate of 10 mm/min was composed of relatively large grains with crystal orientation along the growth direction. The crystal orientation was consistent with the easy axis of the crystal growth on the face-centered-cubic (f.c.c.) structure. On the other hand, the adjacent grains of the Pt fiber fabricated at 50 mm/min were randomly oriented owing to a faster growth rate. In tensile tests, the Pt fibers fabricated by the A-μ-PD method indicated extremely different stress–strain curves compared to the commercial Pt wire. The maximum tensile stress of the Pt fiber reached ~100 MPa, and the Pt fiber ruptured after 58% nominal strain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []