Improvement of nonlinearity correction for BES III ETOF upgrade

2014 
An improved scheme to implement integral non-linearity (INL) correction of time measurements in the Beijing Spectrometer III Endcap Time-of-Flight (BESIII ETOF) upgrade system is presented in this paper. During upgrade, multi-gap resistive plate chambers (MRPC) are introduced as ETOF detectors which increases the total number of time measurement channels to 1728. The INL correction method adopted in BESIII TOF proved to be of limited use, because the sharply increased number of electronic channels required for reading out the detector strips degrade the system configuration efficiency severely. Furthermore, once installed into the spectrometer, BESIII TOF electronics do not support the TDCs’ nonlinearity evaluation online. In this proposed method, INL data used for the correction algorithm are automatically imported from a non-volatile read-only memory (ROM) instead of from data acquisition software. This guarantees the real-time performance and system efficiency of the INL correction, especially for the ETOF upgrades with massive number of channels. Besides, a signal that is not synchronized to the system 41.65 MHz clock from BEPCII is sent to the frontend electronics (FEE) to simulate pseudo-random test pulses for the purpose of online nonlinearity evaluation. Test results show that the time measuring INL errors in one module with 72 channels can be corrected online and in real time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []