Deep-sea bacteria trigger settlement and metamorphosis of the mussel Mytilus coruscus larvae.

2021 
Bacteria from coast seawaters are widely known to induce larval recruitment of many invertebrates. However, whether and how deep-sea bacteria, that play crucial roles in the ecological and biogeochemical cycles, promote larval recruitment remains little known. Here, the interaction between deep-sea bacterial biofilms (BFs) and Mytilus coruscus larvae was tested. All these nine deep-sea bacterial isolates triggered planktonic-sessile transition, and the highest percentage of post-larvae was observed in Virgibacillus sp. 1 BF. Except for Pseudomonas sp. 3, Pseudoalteromonas sp. 32 and Bacillus sp. 13, other BF cell  densities were significantly related to their corresponding inductive efficiency. The deep-sea Virgibacillus sp. 1 BF's cue that triggers planktonic-sessile transition was uncovered. Treating Virgibacillus sp. 1 BFs through physic-chemical approaches reduced inducing impact and cell survival. The conditioned water collaborated with formalin-fixed Virgibacillus sp. 1 BF hoisted planktonic-sessile transition efficiency in comparison to each one alone. Thus, two signals derived from deep-sea bacteria trigger planktonic-sessile transition in M. coruscus. This finding firstly demonstrates that deep-sea bacteria has good potential for application in the mussel seed production and provides novel insight to clarify the bacteria-mussel interaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []