An efficient dynamical model of reluctance actuators with flux fringing and magnetic hysteresis

2021 
Abstract This paper presents an efficient and accurate dynamical model of reluctance actuators, suitable for prediction and control applications. It is a hybrid lumped-parameter state-space model that takes into account the mechanical and electromagnetic dynamics, including eddy currents, flux fringing, magnetic hysteresis and saturation. Special emphasis is placed on the hysteresis model, which is based on the Jiles–Atherton theory. The novel parts of the model – the gap reluctance expression and the modified Jiles–Atherton hysteresis model – are identified, showing that the simulated results fit very well the experimental data. Furthermore, its potential application for control is exemplified with a feedback strategy, in which the design of the controller and observer are based on the proposed dynamical model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []