Three-Dimensional Characterization of Layers of Condensed Gas Molecules Forming Universally on Hydrophobic Surfaces

2018 
Understanding the solvation layer of hydrophobic surfaces is essential for elucidating the interaction between hydrophobic surfaces in aqueous solutions. Despite their importance, little is known on these layers due to the lack of lateral resolution in spectroscopic or scattering experiments and probe instability in the static scanning probe methods used in most experiments. Using a high-resolution FM-AFM with stiff cantilevers and hydrophilic tips, we overcome this instability to provide the first detailed 3d maps of the solvation/hydration layer of two archetypal hydrophobic surfaces: graphite (HOPG) and self-assembled fluoro-alkane monolayer (FDTS). In degassed solutions we find different tip–surface interactions for the two surfaces; hydration oscillations superimposed on van der Waals attraction with HOPG and electrostatic repulsion with FDTS. Both are similar to interactions observed with hydrophilic surfaces. In solutions equilibrated with atmospheric air or high-pressure nitrogen, the tip–surface ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    24
    Citations
    NaN
    KQI
    []