Compact Two-Sided Krylov Methods for Nonlinear Eigenvalue Problems
2018
We describe a generalization of the compact rational Krylov (CORK) methods for polynomial and rational eigenvalue problems that usually, but not necessarily, come from polynomial or rational approximations of genuinely nonlinear eigenvalue problems. CORK is a family of one-sided methods that reformulates the polynomial or rational eigenproblem as a generalized eigenvalue problem. By exploiting the Kronecker structure of the associated pencil, it constructs a right Krylov subspace in compact form and thereby avoids the high memory and orthogonalization costs that are usually associated with linearizations of high degree matrix polynomials. CORK approximates eigenvalues and their corresponding right eigenvectors but is not suitable in its current form for the computation of left eigenvectors. Our generalization of the CORK method is based on a class of Kronecker structured pencils that include as special cases the CORK pencils, the transposes of CORK pencils, and the symmetrically structured linearizations ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
22
References
12
Citations
NaN
KQI