Review on the Effect of Compensation Ions on Zeolite’s Hydrogen Adsorption

2021 
The development of a safe and efficient storage method is a key to achieving hydrogen economy. The zeolites are crystalline and porous aluminosilicate. They are potential candidates for hydrogen storage. These materials are well known for their electrostatic fields due to the differences in electronegativity between the atoms of aluminum, silicon, oxygen and compensation cations. In addition to temperature and pressure, the adsorption of hydrogen on zeolites depends also on the crystal lattice topology and compensating cations. Several studies have illustrated the effect of exchange on the adsorption capacity of these materials. These properties promote the zeolite’s surface energy change leading to an increase in the hydrogen’s uptake capacity. Charge compensation ions in the zeolite’s framework are considered as adsorption centers and the structure’s oxygen bridges as minor adsorption sites. Indeed, the gained mass per unit of area reveals the effect of the ion’s exchange in terms of cation’s size and charge.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []