Simulated wastewater reduced Klebsiella michiganensis strain LH-2 viability and corresponding antibiotic resistance gene abundance in bio-electrochemical reactors

2018 
Abstract A previous study revealed that the electrolytic stimulation process in bio-electrochemical reactors (BER) can accelerate growth of sulfadiazine (SDZ) antibiotic resistant bacteria (ARB) in nutrient broth medium. However, the influence of different medium nutrient richness on the fate of ARB and the relative abundance of their corresponding antibiotic resistance genes (ARGs) in this process is unknown. Specifically, it is not clear if the fate of ARB in minimal nutrition simulated wastewater is the same as in nutrient broth under electrolytic stimulation. Therefore, in this study, nutrient broth medium and the simulated wastewater were compared to identify differences in the relative abundance of Klebsiella michiganensis LH-2 ARGs in response to the electrolytic stimulation process, as well as the fate of the strain in simulated wastewater. Lower biomass, specific growth rates and viable bacterial counts were obtained in response to the application of increasing current to simulated wastewater medium. Furthermore, the percentage of ARB lethality, which was reflected by flow cytometry analysis, increased with current in the medium. A significant positive correlation of sul genes and intI gene relative abundance versus current was also observed in nutrient broth. However, a significant negative correlation was observed in simulated wastewater because of the higher metabolic burden, which may have led to decreased ARB viability. Further investigation showed that the decrease in ARGs abundance was responsible for decreased strain tolerance to SDZ in simulated wastewater. These results reveal that minimal nutrition simulated wastewater may reduce ARB and ARGs propagation in BER.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    4
    Citations
    NaN
    KQI
    []