Performance of CRTS-II Ballastless Track–Bridge Structural System Rebars under Fatigue Loading Test

2021 
To study the evolution of mechanical properties of steel rebars in the China Railway Track System Type II (CRTS II) ballastless track–bridge structural system under repeated train loads, a 1/4 scale three-span ballastless slab track simple-supported bridge structural system specimen was manufactured and subjected to a multistage fatigue test with 18 million cycles. The experimental results show that the strain amplitude of the steel bar changes proportionally to the fatigue stress amplitude, and there is an obvious strain increase in the loading stage 4, where the fatigue stress amplitude is the largest. During the test, the cumulative strain–amplitude ratio first decreases then increases. At the end of the test, the cumulative strain–amplitude ratio increases by 5.46% and 5.32%, respectively, at L/2 and L/4 sections. The load–strain curve of the steel rebar keeps the shape of an oblique straight line. The slope increases first and then decreases with a degradation at the end of the test of 5.15% and 4.81%, respectively, at L/2 and L/4 sections. The mechanical properties of the rebar are enhanced under the first three million fatigue loading cycles: this is the fatigue strengthening stage. The mechanical properties of reinforcement gradually degrade from the three millionth cycle to the end of the test: this is the fatigue damage stage. Finally, based on the material fatigue damage model and the multistage cumulative damage criterion, the change rule of the load–strain curve slope of steel rebars in the fatigue damage stage is obtained by finite element simulation. The simulation results agree well with the experimental data, proving the validity of the calculation method proposed in this paper.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []