Lightweight CO{sub 2}-resistant cements for geothermal well completions

1994 
Alkali metal catalyzed reactions between CO{sub 2}-containing brines and portland cement-based well cements can result in rapid strength reductions, increased permeability and casing corrosion, reduced well life, increased costs, and environmental concerns. Materials formed by acid-base reactions between calcium aluminate compounds and phosphate-containing solutions yield high strength, low permeability and CO{sub 2}-resistant cements when cured in hydrothermal environments. The cementing formulations are pumpable for several hours at temperatures up to 150C, thereby making their use for well completions technically feasible. When this cementing matrix was exposed in an autoclave containing Na{sub 2}CO{sub 3}-saturated brine for 120 days, < 0.4 wt% CaCO{sub 3} was produced. A conventional portland cement-based well completion material will form {approx} 10 wt% CaCO{sub 3} after only 7 days exposure. Addition of hollow aluminosilicate microspheres to the uncured matrix constituents yields slurries with densities as low as {approx} 1.2 g/cc which cure to produce materials with properties meeting the criteria for well cementing. Laboratory characterization is nearing completion, engineering scale-up is underway, and plans for field testing in a variety of geothermal fluids are being made.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []