Understanding Radiative Transitions and Relaxation Pathways in Plexcitons.

2021 
Molecular aggregates on plasmonic nanoparticles have emerged as attractive systems for the studies of cavity quantum electrodynamics. They are highly tunable, scalable, easy to synthesize and offer sub-wavelength confinement, all while giving access to the ultrastrong light-matter coupling regime at room temperature and promising a plethora of applications. However, the complexity of both the molecular aggregate and plasmonic nanoparticle introduces many more processes affecting the excitation and its relaxation, than are present in atom-cavity systems. Here, we follow the complex relaxation pathways of the photoexcitation of such hybrid systems and conclude that while the metal is responsible for destroying the coherence of the excitation, the molecular aggregate significantly participates in dissipating the energy. We rely on two-dimensional electronic spectroscopy in a combined theory-experiment approach, which allows us to ascribe the different timescales of relaxation to processes inside the molecules or the metal nanoparticle. We show that the dynamics beyond a few femtoseconds has to be cast in the language of hot electron distributions and excitons instead of the accepted lower and upper polariton branches, and furthermore set the framework for delving deeper into the photophysics of excitations that could be used in hot electron transfer, for example to drive photocatalytic reactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []