Charge-Driven Transtive Devices via Electric Field Control of Magnetism in a Helimagnet

2021 
Transtor and memtranstor are the fourth basic linear and memory elements, which allows direct coupling of charge (q) to magnetic flux ({\phi}) via linear and non-linear ME effects, respectively. It is found here that large variation of magnetization by electric field is realized in both linear and nonlinear hysteretic styles in a magnetoelectric Y-type hexaferrite Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22 single-crystal. Moreover, based on the spin current model, the underlying microscopic mechanisms for generating the two types of linear and nonlinear M vs E curves are understood as E induced changes of cone angle and sign of P respectively, establishing the charge-driven transtor and memtranstor in the Y-type hexaferrite system. This work points to a promising pathway to develop unique circuit functionalities using the magnetoelectric materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []