Model Based Edge-Preserving and Guided Filter for Real-World Hazy Scenes Visibility Restoration

2017 
Transmission estimation is the most challenging part for single image haze removal and very sensitive to environment noise. However, most existing single image dehazing algorithms are far from satisfactory in terms of restoring an image’s details and noise removal. To address this issue, an improved haze imaging model with transmission refinement based on dark channel prior is constructed to preserve the edge details and enhance visibility. Then, a fast single image dehazing algorithm called TSGA algorithm is proposed for complex real-world images. A refined transmission map obtained by TGVSH regularity scheme provides more edges and finer details and is less susceptible to noise. Guided filter and adaptive histogram equalization greatly enhance the visibility and color contrast of the scenes and significantly improve the drawback of halo artifacts. A large quantity of comparative experiment results demonstrate that the proposed algorithm simultaneously removes the serious effect of haze and noise, effectively makes the restored images look more natural, and has a lower time complexity. All these make it a good candidate for image segmentation, object recognition, and target tracking in complex real-world weather conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    1
    Citations
    NaN
    KQI
    []