Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst

2019 
Abstract Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts. The optimized sample achieves excellent ORR catalytic performance with an ultralow H 2 O 2 yield (1%) and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    37
    Citations
    NaN
    KQI
    []