Prenatal exposure to organophosphate esters and neonatal thyroid-stimulating hormone levels: A birth cohort study in Wuhan, China.

2021 
Abstract Background Increasing animal studies have indicated that organophosphate esters (OPEs) have endocrine-disruptive potential. However, human epidemiological evidence is limited, especially in susceptible populations, such as pregnant women and neonates. The purpose of this present study was to examine the trimester-specific relationships of prenatal exposure to OPEs with neonatal thyroid-stimulating hormone (TSH). Method A total of 102 mother-newborn pairs were recruited from a birth cohort study between April 2015 and September 2016 in Wuhan, China. Eight OPE metabolites were detectable in urine samples from pregnant women across the different three trimesters. Neonatal TSH levels were measured using time-resolved immunofluorescence assay. The associations between maternal urinary OPE metabolites and neonatal TSH and the critical exposure windows of fetal vulnerability were estimated using multiple informant models. Results Seven OPE metabolites with detection frequency > 50% (52.9%–98.0%) were detected in repeated urine samples from different three trimesters, and the urinary OPE metabolites across pregnancy was of high variability (ICCs: 0.09–0.26). After adjusted for confounders (e.g., maternal age, prepregnancy BMI, passive smoking during pregnancy), some suggestive associations were observed between maternal urinary OPE metabolites and neonatal TSH in different trimesters. A doubling of second trimester di-o-cresyl phosphate & di-p-cresyl phosphate (DoCP & DpCP) was associated with a 7.82% increase in neonatal TSH level (95% CI: −0.70%, 17.06%, p-value = 0.07), a doubling of third trimester diphenyl phosphate (DPHP) was associated with a 4.71% decrease in neonatal TSH level (95% CI: –9.80%, 0.67%, p-value = 0.09), and a doubling of third trimester bis(2-butoxyethyl) phosphate (BBOEP) was associated with a 6.38% increase in neonatal TSH level (95% CI: −0.12%, 13.31%, p = 0.05). However, such associations did not differ materially across trimesters. When performing stratified analysis by infant sex, the associations were statistically significant and were sex-dependent. In females, maternal urinary DoCP & DpCP concentrations in each trimester were associated with increased neonatal TSH levels, and urinary DPHP concentration in the third trimester was associated with decreased neonatal TSH level. In males, maternal urinary BBOEP concentration in the first trimester was positively related to neonatal TSH level. Conclusion This prospective study demonstrated that prenatal exposure to OPEs can lead to a sex-dependent change in neonatal TSH levels. Although the sex-selective effect was differed among various urinary OPE metabolites, more evidence was supported that OPE exposure was related to increased TSH levels for both males and females.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    1
    Citations
    NaN
    KQI
    []