Enhanced optical absorbance and fabrication of periodic arrays on nickel surface using nanosecond laser

2017 
Abstract A hundred-nanosecond pulsed laser was employed to structure the nickel surface. The effects of laser spatial filling interval and laser scanning speed on the optical absorbance capacity and morphologies on the nickel surface were experimentally investigated. The black nickel surface covered with dense micro/nanostructured broccoli-like clusters with strong light trapping capacity ranging from the UV to the near IR was produced at a high laser scanning speed up to v =100 mm/s. The absorbance of the black nickel is as high as 98% in the UV range of 200–400 nm, more than 97% in the visible spectrum, ranging from 400 to 800 nm, and over 90% in the IR between 800 and 2000 nm. In addition, when the nickel surface was irradiated in two-dimensional crossing scans by laser with different processing parameters, self-organized and shape-controllable structures of three-dimensional (3D) periodic arrays can be fabricated. Compared with ultrafast laser systems previously used for such processing, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. This nickel surface structured technique may be applicable in optoelectronics, batteries industry, solar/wave absorbers, and wettability materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    9
    Citations
    NaN
    KQI
    []