Persistent current states in bilayer graphene

2015 
We argue that at finite carrier density and large displacement fields, bilayer graphene is prone to $\ell =0$ and $\ell = 1$ Pomeranchuk Fermi surface instabilities. The broken symmetries are driven by non-local exchange interactions which favor momentum space condensation. We find that electron-electron interactions lead first to spontaneous valley polarization, which breaks time-reversal invariance and is associated with spontaneous orbital magnetism, and then under some circumstances to a nematic phase with reduced rotational symmetry. When present, nematic order is signaled by reduced symmetry in the dependence of optical absorption on light polarization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    8
    Citations
    NaN
    KQI
    []