Optimization of ER8 and 42CrMo4 Steel Rail Wheel for Road–Rail Vehicles

2020 
Railway track maintenance services aim to shorten the time of removing failures on the railways. One of the most important element that shorten the repair time is the quick access to the failure site with an appropriate equipment. The use of road-rail vehicles is becoming increasingly important in this field. In this type of constructions, it is possible to use proven road vehicles such as self-propelled machines or trucks running on wheels with tires. Equipping these vehicles with a parallel rail drive system allows for quick access to the failure site using both roads and railways. Steel rail wheels of road-rail vehicles are designed for specific applications. Since the total weight of vehicle is a crucial parameter for roadworthiness, the effort is made to minimize the mass of rail wheels. The wheel under consideration is mounted directly on the hydraulic motor. This method of assembly is structurally convenient, as no shafts or intermediate couplings are required. On the other hand, it results in strict requirements for the wheel geometry and can cause significant stress concentration. Therefore, the problem of wheel geometry optimization is discussed. Consideration is given to the use of ER8 steel for railway application and 42CrMo4 high-strength steel. Finite element analysis within Ansys software and various optimization tools and methods, such as random tool, subproblem approximation method and first-order method are applied. The obtained results allow to minimize the rail wheel mass with respect to the used material. Moreover, computational demands and methods leading to the best results are compared.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []