Convergent Filaments Contracting Towards an Intermediate-mass Prestellar Core

2021 
Filamentary structures are closely associated with star-forming cores, but their detailed physical connections are still not clear. We studied the dense gas in the region of OMC-3 MMS-7 in Orion A molecular cloud using the molecular lines observed with the Atacama Large Millimeter/submillimeter Array (ALMA) and the Submillimeter Array (SMA). The ALMA N$_2$H$^+$ (1-0) emission has revealed three dense filaments intersected at the center, coincident with the central core MMS-7, which has a mass of $3.6\,M_\odot$. The filaments and cores are embedded in a parental clump with total mass of $29\,M_\odot$. The N$_2$H$^+$ velocity field exhibits a noticeable increasing trend along the filaments towards the central core MMS-7 with a scale of $v-v_{\rm lsr} \simeq 1.5$ ${\rm km\, s^{-1}}$ over a spatial range of $\sim$20 arcsec ($8\times 10^3$ AU), corresponding to a gradient of $40\,{\rm km\, s^{-1}}\,{\rm pc}^{-1}$. This feature is most likely to indicate an infall motion towards the center. The derived infall rate ($8\times 10^{-5}\,M_\odot$ year$^{-1}$) and timescale ($3.6\times 10^5$ years) are much lower than that in a spherical free-fall collapse and more consistent with the contraction of filament structures. The filaments also exhibit a possible fragmentation, but it does not seem to largely interrupt the gas structure or the infall motion towards the center. MMS-7 thus provides an example of filamentary infall into an individual prestellar core. The filament contraction could be less intense but more steady than the global spherical collapse, and may help generate an intermediate- or even high-mass star.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    1
    Citations
    NaN
    KQI
    []