Evaluation of Chip Formation Mechanisms in the Turning of Sintered ZnO Electro-Ceramics

2021 
The sintered zinc oxide (ZnO) electro-ceramics are a brittle class of hard-to-cut materials such that shaping them with the post-finishing operations necessitates careful handling and precision machining. The conventional machining approach using the grinding and lapping processes represents limited productivity, an inability to produce the required geometries and frequent uncontrolled chipping of the edges of the final products. This study thus investigates the turning performance of dense sintered ZnO varistors and chip formations to obtain the parametric range (cutting mechanism) which causes the chipping or the trans-granular/sudden failure in these brittle materials. With the analysis of the cutting tool vibration in relation to the machining parameters (f and VC), the vibration-induced chipping correlations are made and interlinked with the occurrence of grain pull-out during the turning operation. The results show that the reflected vibratory motion of the tools is directly correlated with the chip formation mechanisms in the turning of ZnO ceramics and thus provide robust measurements for quality assurance in final products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []