Nucleic acid interactions with pyrite surfaces

2008 
Abstract The study of the interaction of nucleic acid molecules with mineral surfaces is a field of growing interest in organic chemistry, origin of life, material science and biotechnology. We have characterized the adsorption of single-stranded peptide nucleic acid (ssPNA) on a natural pyrite surface, as well as the further adsorption of ssDNA on a PNA-modified pyrite surface. The characterization has been performed by means of reflection absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM) and X-ray photoemission spectroscopy (XPS) techniques. The N(1s) and S(2p) XPS core level peaks of PNA and PNA + DNA have been decomposed in curve-components that we have assigned to different chemical species. RAIRS spectra recorded for different concentrations show the presence of positive and negative adsorption bands, related to the semiconducting nature of the surface. The combination of the information gathered by these techniques confirms that PNA adsorbs on pyrite surface, interacting through nitrogen-containing groups of the nucleobases and the iron atoms of the surface, instead of the thiol group of the molecule. The strong PNA/pyrite interaction inhibits further hybridization of PNA with complementary ssDNA, contrary to the behavior reported on gold surfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    18
    Citations
    NaN
    KQI
    []