Metabolic vulnerability of cisplatin‐resistant cancers

2018 
Abstract Cisplatin is the most widely used chemotherapeutic agent, and resistance of neoplastic cells against this cytoxicant poses a major problem in clinical oncology. Here, we explored potential metabolic vulnerabilities of cisplatin‐resistant non‐small human cell lung cancer and ovarian cancer cell lines. Cisplatin‐resistant clones were more sensitive to killing by nutrient deprivation in vitro and in vivo than their parental cisplatin‐sensitive controls. The susceptibility of cisplatin‐resistant cells to starvation could be explained by a particularly strong dependence on glutamine. Glutamine depletion was sufficient to restore cisplatin responses of initially cisplatin‐resistant clones, and glutamine supplementation rescued cisplatin‐resistant clones from starvation‐induced death. Mass spectrometric metabolomics and specific interventions on glutamine metabolism revealed that, in cisplatin‐resistant cells, glutamine is mostly required for nucleotide biosynthesis rather than for anaplerotic, bioenergetic or redox reactions. As a result, cisplatinresistant cancers became exquisitely sensitive to treatment with antimetabolites that target nucleoside metabolism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    44
    Citations
    NaN
    KQI
    []