Organic Cavity Photodetectors Based on Nanometer-Thick Active Layers for Tunable Monochromatic Spectral Response

2019 
Application of spectroscopic photo-detecting technologies in future innovations such as wearable or integrated electronics will require miniaturized spectrometers. This can be achieved by using an array of small-area, wavelength-selective photodetectors. Here, filterless narrowband photodetectors based on a novel device concept are demonstrated. The narrowband photoresponse is realized by utilizing nanometer-thick 2,2-((3,4-dimethyl-[2,2:5,2:5,2:5,2-quinquethiophene]-5,5-diyl)bis (methanylylidene))-dimalononitrile (DCV5T-Me):C60 photo-active layers (3-6 nm) in a Fabry-Perot cavity. By varying the cavity thickness, achieved by adjusting the transport layer thicknesses, we realize continuously tunable detection wavelengths, spanning the entire visible region (400-700 nm). Most importantly, because the active layer is only nanometer-thick, position of the active layer can be adjusted within the cavity. Thus, with an optimized position of the active layer, the photodetectors exhibit an overtone free, monochro...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    16
    Citations
    NaN
    KQI
    []