Mechanics and Single-Molecule Interrogation of DNA Recombination

2016 
The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities—including rearrangements, deletions, and aneuploidy—that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules—homologously paired but metastable DNA intermediates that are processed by several alternative subpathways—making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    164
    References
    52
    Citations
    NaN
    KQI
    []