Exploiting Ca2+ signaling in T cells to advance cancer immunotherapy

2020 
Abstract Decades of basic research has established the importance of Ca2+ to various T cell functions, such as cytotoxicity, proliferation, differentiation and cytokine secretion. We now have a good understanding of how proximal TCR signaling initiates Ca2+ influx and how this influx subsequently changes transcriptional activities in T cells. As chimeric antigen receptor (CAR)-T therapy has achieved great clinical success, is it possible to harness Ca2+ signaling to further advance CAR-T research? How is CAR signaling different from TCR signaling? How can functional CARs be identified in a high-throughput way? Quantification of various Ca2+ signals downstream of CAR/TCR activation might help answer these questions. Here we first summarized recent studies that used Ca2+ dye, genetically-encoded Ca2+ indicators (GECI) or transcriptional activity reporters to understand CAR activation in vitro and in vivo. We next reviewed several proof-of-concept reports that manipulate Ca2+ signaling by light or ultrasound to achieve precise spatiotemporal control of T cell functions. These efforts, though preliminary, opened up new avenues to solve the on-target/off-tumor problem of therapeutic T cells. Other modalities to regulate Ca2+ signaling, such as radio wave and electrical pulse, were also discussed. Thus, monitoring or manipulating Ca2+ signaling in T cells provides us many opportunities to advance cancer immunotherapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    0
    Citations
    NaN
    KQI
    []