Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: effect of surface energy on device performance.

2015 
To realize the full-color displays using colloidal nanocrystal quantum dot (QD)-based light emitting diodes (QLEDs), the emissive QD layer should be patterned to red (R), green (G), and blue (B) subpixels on a micrometer scale by the solution process. Here, we introduced a soft contact QD-transplanting technique onto the vacuum-deposited small molecules without pressure to pattern the QD layer without any damage to the prior organic layers. We examined the patternability of QDs by studying the surface properties of various organic layers systematically. As a result, we found that the vacuum-deposited 4,4′,4″-tri(N-carbazolyl)triphenylamine (TCTA) layer is suitable for QD-transplanting. A uniform and homogeneous QD patterns down to 2 μm could be formed for all the RGB QDs (CdSe/CdS/ZnS, CdSe@ZnS, and Cd1–xZnxS@ZnS, respectively) with this method. Finally, we demonstrated the R, G, and B QLEDs by transplanting each QD onto the soft TCTA layer, exhibiting higher brightness (2497, 14 102, and 265 cd m–2, resp...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    20
    Citations
    NaN
    KQI
    []