Molecular determinants of ovarian cancer chemoresistance: new insights into an old conundrum.

2012 
Ovarian cancer is the most lethal gynecological malignancy. Cisplatin and its derivatives are first-line chemotherapeutics, and their resistance is a major hurdle in successful ovarian cancer treatment. Understanding the molecular dysregulation underlying chemoresistance is important for enhancing therapeutic outcome. Here, we review two established pathways in cancer chemoresistance. p53 is a major tumor suppressor regulating proliferation and apoptosis, and its mutation is a frequent event in human malignancies. The PI3K/Akt axis is a key oncogenic pathway regulating survival and tumorigenesis by controlling several tumor suppressors, including p53. The interplay between these pathways is well established, although the oncogenic phosphatase PPM1D adds a new layer to this intricate relationship and provides new insights into the processes determining cell fate. Inhibition of the PI3K/Akt pathway by functional food compounds as an adjunct to chemotherapeutics may tip the balance in favor of apoptosis rather than survival, enhancing therapeutic efficacy, and reducing side effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    105
    References
    72
    Citations
    NaN
    KQI
    []